Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Tradit Complement Med ; 14(1): 101-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223806

RESUMO

Background and aim: Pediatric high-grade gliomas (pedHGG) comprise a very poor prognosis. Thus, parents of affected children are increasingly resorting to complementary and alternative medicine (CAM), among those Boswellia extracts. However, nothing is known about the therapeutic effectiveness of their active substances, Boswellic acids (BA) in pedHGG. Thus, we aimed to investigate if the three main Boswellic acids (BA) present in Boswellia plants, alpha-boswellic acid (α-BA), beta-boswellic acid (ß-BA) and 3-acetyl-11-keto-beta-boswellic acid (AKBA) hold any promising potential for treatment of affected pedHGG patients. Experimental procedure: Histone 3 (H3)-wildtype and H3.3K27M-mutant pedHGG cell lines were treated with BA, either alone or in combination with radio-chemotherapy with temozolomide. Cell viability, stemness properties, apoptosis, in ovo tumor growth and the transcriptome was investigated upon BA treatment. Results and conclusion: Interestingly, α-BA and ß-BA treatment promoted certain tumor properties in both pedHGG cells. AKBA treatment reduced cell viability and colony growth accompanied by induction of slight anti-inflammatory effects especially in H3.3K27M-mutant pedHGG cells. However, no effects on apoptosis and in ovo tumor growth were found. In conclusion, besides positive anti-tumor effects of AKBA, tumor promoting effects were observed upon treatment with α-BA and ß-BA. Thus, only pure AKBA formulations may be used to exploit any potential positive effects in pedHGG patients. In conclusion, the use of commercially available supplements with a mixture of different BA cannot be recommended due to detrimental effects of certain BA whereas pure AKBA formulations might hold some potential as therapeutic supplement for treatment of pedHGG patients.

2.
Environ Toxicol Pharmacol ; 105: 104348, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135202

RESUMO

In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.


Assuntos
Alanina/análogos & derivados , Dioxolanos , Fungicidas Industriais , Perciformes , Triazóis , Animais , Peixe-Zebra/metabolismo , Transcriptoma , Fungicidas Industriais/toxicidade , Proteômica , Perfilação da Expressão Gênica , Perciformes/genética
3.
Sci Adv ; 9(47): eadi6855, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000031

RESUMO

Neuroinflammation causes neuronal injury in multiple sclerosis (MS) and other neurological diseases. MicroRNAs (miRNAs) are important modulators of neuronal stress responses, but knowledge about their contribution to neuronal protection or damage during inflammation is limited. Here, we constructed a regulatory miRNA-mRNA network of inflamed motor neurons by leveraging cell type-specific miRNA and mRNA sequencing of mice undergoing experimental autoimmune encephalomyelitis (EAE). We found robust induction of miR-92a in inflamed spinal cord neurons and identified cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) as a key target of miR-92a-mediated posttranscriptional silencing. We detected CPEB3 repression in inflamed neurons in murine EAE and human MS. Moreover, both miR-92a delivery and Cpeb3 deletion protected neuronal cultures against excitotoxicity. Supporting a detrimental effect of Cpeb3 in vivo, neuron-specific deletion in conditional Cpeb3 knockout animals led to reduced inflammation-induced clinical disability in EAE. Together, we identified a neuroprotective miR-92a-Cpeb3 axis in neuroinflammation that might serve as potential treatment target to limit inflammation-induced neuronal damage.


Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Esclerose Múltipla , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neuroinflamatórias , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Inflamação/genética , Inflamação/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Cell Metab ; 35(12): 2136-2152.e9, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989315

RESUMO

The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.


Assuntos
Bainha de Mielina , Nervos Periféricos , Bainha de Mielina/metabolismo , Neuroglia , Células de Schwann/metabolismo , Regeneração Nervosa/fisiologia
5.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37681301

RESUMO

Drosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored. Here, we combine single-cell transcriptomics and high-resolution microscopy to dissect the heterogeneity and plasticity of pupal hemocytes. We identified undifferentiated and specified hemocytes with different molecular signatures associated with distinct functions such as antimicrobial, antifungal immune defense, cell adhesion or secretion. Strikingly, we identified a highly migratory and immune-responsive pupal cell population expressing typical markers of the posterior signaling center (PSC), which is known to be an important niche in the larval lymph gland. PSC-like cells become restricted to the abdominal segments and are morphologically very distinct from typical Hemolectin (Hml)-positive plasmatocytes. G-TRACE lineage experiments further suggest that PSC-like cells can transdifferentiate to lamellocytes triggered by parasitoid wasp infestation. In summary, we present the first molecular description of pupal Drosophila blood cells, providing insights into blood cell functional diversification and plasticity during pupal metamorphosis.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transcriptoma/genética , Diferenciação Celular , Células Sanguíneas/metabolismo , Proteínas de Drosophila/metabolismo , Hemócitos , Larva/metabolismo
6.
iScience ; 26(10): 107786, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731621

RESUMO

N4-hydroxycytidine (NHC), the active compound of the drug Molnupiravir, is incorporated into SARS-CoV-2 RNA, causing false base pairing. The desired result is an "error catastrophe," but this bears the risk of mutated virus progeny. To address this experimentally, we propagated the initial SARS-CoV-2 strain in the presence of NHC. Deep sequencing revealed numerous NHC-induced mutations and host-cell-adapted virus variants. The presence of the neutralizing nanobody Re5D06 selected for immune escape mutations, in particular p.E484K and p.F490S, which are key mutations of the Beta/Gamma and Omicron-XBB strains, respectively. With NHC treatment, nanobody resistance occurred two passages earlier than without. Thus, within the limitations of this purely in vitro study, we conclude that the combined action of Molnupiravir and a spike-neutralizing antagonist leads to the rapid emergence of escape mutants. We propose caution use and supervision when using Molnupiravir, especially when patients are still at risk of spreading virus.

7.
Bioanalysis ; 15(15): 861-903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37584363

RESUMO

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.


Assuntos
Bioensaio , Relatório de Pesquisa , Citometria de Fluxo/métodos , Ligantes , Biomarcadores/análise , Bioensaio/métodos
8.
Nat Commun ; 14(1): 4416, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479718

RESUMO

Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics. Extracellular matrix remodeling in the pulmonary arterial wall, manifested by dysregulated genes implicated in elastin degradation, precedes the onset of pulmonary hypertension. The resulting degradation of elastic fibers is paralleled by an accumulation of fibrillar collagens. Pentagalloyl glucose preserves arterial elastic fibers from elastolysis, reduces inflammation and collagen accumulation, improves pulmonary artery biomechanics, and normalizes right ventricular and pulmonary hemodynamics in a rat model of pulmonary hypertension due to left heart disease. Thus, targeting extracellular matrix remodeling may present a therapeutic approach for pulmonary hypertension due to left heart disease.


Assuntos
Cardiopatias , Hipertensão Pulmonar , Humanos , Animais , Ratos , Artéria Pulmonar , Fenômenos Biomecânicos , Elastina
9.
Nucleic Acids Res ; 51(16): 8758-8773, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351636

RESUMO

CF IB/Hrp1 is part of the cleavage and polyadenylation factor (CPF) and cleavage factor (CF) complex (CPF-CF), which is responsible for 3' cleavage and maturation of pre-mRNAs. Although Hrp1 supports this process, its presence is not essential for the cleavage event. Here, we show that the main function of Hrp1 in the CPF-CF complex is the nuclear mRNA quality control of proper 3' cleavage. As such, Hrp1 acts as a nuclear mRNA retention factor that hinders transcripts from leaving the nucleus until processing is completed. Only after proper 3' cleavage, which is sensed through contacting Rna14, Hrp1 recruits the export receptor Mex67, allowing nuclear export. Consequently, its absence results in the leakage of elongated mRNAs into the cytoplasm. If cleavage is defective, the presence of Hrp1 on the mRNA retains these elongated transcripts until they are eliminated by the nuclear exosome. Together, we identify Hrp1 as the key quality control factor for 3' cleavage.


Assuntos
Processamento de Terminações 3' de RNA , Proteínas de Saccharomyces cerevisiae , Fatores de Poliadenilação e Clivagem de mRNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
10.
Cells ; 12(9)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174691

RESUMO

Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This study undertakes a combinatorial approach encompassing in vitro, in vivo and in silico investigations to address the relationship between chloroquine-mediated radiosensitization and p53 status in glioblastoma stem cells. Our findings reveal that chloroquine elicits antagonistic impacts on signaling pathways involved in the regulation of cell fate via both transcription-dependent and transcription-independent mechanisms. Evidence is provided that transcriptional impacts of chloroquine are primarily determined by p53 with chloroquine-mediated activation of pro-survival mevalonate and p21-DREAM pathways being the dominant response in the background of wild type p53. Non-transcriptional effects of chloroquine are conserved and converge on key cell fate regulators ATM, HIPK2 and AKT in glioblastoma stem cells irrespective of their p53 status. Our findings indicate that pro-survival responses elicited by chloroquine predominate in the context of wild type p53 and are diminished in cells with transcriptionally impaired p53. We conclude that p53 is an important determinant of the balance between pro-survival and pro-death impacts of chloroquine and propose that p53 functional status should be taken into consideration when evaluating the efficacy of glioblastoma radiosensitization by chloroquine.


Assuntos
Glioblastoma , Radiossensibilizantes , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cloroquina/farmacologia , Radiossensibilizantes/farmacologia , Células-Tronco/metabolismo , Medição de Risco , Proteínas de Transporte , Proteínas Serina-Treonina Quinases/metabolismo
11.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240200

RESUMO

Hidradenitis suppurativa (HS) is an inflammatory skin disease characterized by painful lesions on intertriginous body areas such as the axillary, inguinal, and perianal sites. Given the limited treatment options for HS, expanding our knowledge of its pathogenetic mechanisms is a prerequisite for novel therapeutic developments. T cells are assumed to play a crucial role in HS pathogenesis. However, it is currently unknown whether blood T cells show specific molecular alterations in HS. To address this, we studied the molecular profile of CD4+ memory T (Thmem) cells purified from the blood of patients with HS and matched healthy participants. About 2.0% and 1.9% of protein-coding transcripts were found to be up- and down-regulated in blood HS Thmem cells, respectively. These differentially expressed transcripts (DETs) are known to be involved in nucleoside triphosphate/nucleotide metabolic processes, mitochondrion organization, and oxidative phosphorylation. The detected down-regulation of transcripts involved in oxidative phosphorylation suggest a metabolic shift of HS Thmem cells towards glycolysis. The inclusion of transcriptome data from skin from HS patients and healthy participants in the analyses revealed that in HS skin lesions, the expression pattern of transcripts identified as DETs in blood HS Thmem cells was very similar to the expression pattern of the totality of protein-coding transcripts. Furthermore, there was no significant association between the extent of the expressional changes in the DETs of blood HS Thmem cells and the extent of the expressional changes in these transcripts in HS skin lesions compared to healthy donor skin. Additionally, a gene ontology enrichment analysis did not demonstrate any association of the DETs of blood HS Thmem cells with skin disorders. Instead, there were associations with different neurological diseases, non-alcoholic fatty liver disease, and thermogenesis. The levels of most DETs linked to neurological diseases showed a positive correlation to each other, suggesting common regulatory mechanisms. In summary, the transcriptomic changes in blood Thmem cells observed in patients with manifest cutaneous HS lesions do not appear to be characteristic of the molecular changes in the skin. Instead, they could be useful for studying comorbidities and identifying corresponding blood biomarkers in these patients.


Assuntos
Dermatite , Hidradenite Supurativa , Humanos , Hidradenite Supurativa/patologia , Dermatite/patologia , Pele/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Inflamação/patologia
12.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904362

RESUMO

The study of new materials formulated using recycled polymers offers an ecological and sustainable alternative for the construction industry. In this work, we optimized the mechanical behavior of manufactured masonry veneers made from concrete reinforced with recycled polyethylene terephthalate (PET) from discarded plastic bottles. For this purpose, we used the response surface methodology to evaluate the compression and flexural properties. PET percentage, PET size and aggregate size were used as input factors in a Box-Behnken experimental design resulting in a total of 90 tests. The fraction of the commonly used aggregates replaced by PET particles was 15%, 20% and 25%. The nominal size of the PET particles used was 6, 8 and 14 mm, while the size of the aggregates was 3, 8 and 11 mm. The function of desirability was used to optimize response factorials. The globally optimized formulation contained 15% of 14 mm PET particles in the mixture, and 7.36 mm aggregates, obtaining important mechanical properties of this characterization of masonry veneers. The flexural strength (four-point) was 1.48 MPa, and the compression strength was 3.96 MPa; these values show property improvements of 110% and 94%, respectively, compared to commercial masonry veneers. Overall, this offers the construction industry a robust and environmentally friendly alternative.

13.
Commun Biol ; 6(1): 79, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681760

RESUMO

Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (ß-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of ß-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from ß-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Proteostase , Proteômica , Transcriptoma , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica
14.
Ecotoxicol Environ Saf ; 250: 114514, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608563

RESUMO

Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Estrogênios/metabolismo , Expressão Gênica , Fosfatidato Fosfatase/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
15.
Gut ; 72(9): 1774-1782, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36707233

RESUMO

OBJECTIVE: Investigating the effect of ferroptosis in the tumour microenvironment to identify combinatory therapy for liver cancer treatment. DESIGN: Glutathione peroxidase 4 (GPx4), which is considered the master regulator of ferroptosis, was genetically altered in murine models for hepatocellular carcinoma (HCC) and colorectal cancer (CRC) to analyse the effect of ferroptosis on tumour cells and the immune tumour microenvironment. The findings served as foundation for the identification of additional targets for combine therapy with ferroptotic inducer in the treatment of HCC and liver metastasis. RESULTS: Surprisingly, hepatocyte-restricted GPx4 loss does not suppress hepatocellular tumourigenesis. Instead, GPx4-associated ferroptotic hepatocyte death causes a tumour suppressive immune response characterised by a CXCL10-dependent infiltration of cytotoxic CD8+ T cells that is counterbalanced by PD-L1 upregulation on tumour cells as well as by a marked HMGB1-mediated myeloid derived suppressor cell (MDSC) infiltration. Blocking PD-1 or HMGB1 unleashes T cell activation and prolongs survival of mice with Gpx4-deficient liver tumours. A triple combination of the ferroptosis inducing natural compound withaferin A, the CXCR2 inhibitor SB225002 and α-PD-1 greatly improves survival of wild-type mice with liver tumours. In contrast, the same combination does not affect tumour growth of subcutaneously grown CRC organoids, while it decreases their metastatic growth in liver. CONCLUSION: Our data highlight a context-specific ferroptosis-induced immune response that could be therapeutically exploited for the treatment of primary liver tumours and liver metastases.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Proteína HMGB1 , Neoplasias Hepáticas , Células Supressoras Mieloides , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteína HMGB1/uso terapêutico , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
16.
Oral Dis ; 29(1): 116-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33872434

RESUMO

OBJECTIVE: This study was designed to identify changes in the expression of proteins occurring during the progression of oral squamous cell carcinoma (OSCC) and to validate their impact on patient prognosis. MATERIALS AND METHODS: The human OSCC cell line UPCI-SCC-040 was treated in vitro with TGF-ß1, and transcriptome analysis of differentially expressed genes (DEGs) revealed putative candidates relative to untreated cells. The respective protein expression levels of the most important genes were immunohistochemically validated on a tissue microarray (TMA) containing tissue samples from 39 patients with OSCC and were correlated with disease-free survival (DFS) as the primary clinical endpoint. RESULTS: Our univariate Cox proportional hazard regression (CR) analysis revealed significant correlations among positive N stage (local lymph node metastasis, p = .04), stearoyl-CoA desaturase-1 (p < .01), sclerostin (p = .01), and CD137L expression (p = .04) and DFS. Stearoyl-CoA desaturase-1 and sclerostin remained the main prognostic factors (p < .01) in the multiple CR model. CONCLUSION: We identified changes in differentially expressed genes during OSCC progression in vitro and translated the impact of the most deregulated genes on patient prognosis. Stearoyl-CoA desaturase-1 and sclerostin acted as independent prognostic factors in OSCC and could also be interesting candidates for new cancer targeted therapeutic approaches.


Assuntos
Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Biomarcadores Tumorais/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estearoil-CoA Dessaturase/genética
17.
J Allergy Clin Immunol ; 151(4): 1015-1026, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36481267

RESUMO

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by painful inflamed nodules, abscesses, and pus-draining tunnels appearing in axillary, inguinal, and perianal skin areas. HS lesions contain various types of immigrated immune cells. OBJECTIVE: This study aimed to characterize mediators that support lesional B/plasma cell persistence in HS. METHODS: Skin samples from several cohorts of HS patients and control cohorts were assessed by mRNA sequencing, quantitative PCR on reverse-transcribed RNA, flow cytometry, and immunohistofluorescence. Blood plasma and cultured skin biopsy samples, keratinocytes, dermal fibroblasts, neutrophilic granulocytes (neutrophils), monocytes, and B cells were analyzed. Complex systems biology approaches were used to evaluate bulk and single-cell RNA sequencing data. RESULTS: Proportions of B/plasma cells, neutrophils, CD8+ T cells, and M0 and M1 macrophages were elevated in HS lesions compared to skin of healthy and perilesional intertriginous areas. There was an association between B/plasma cells, neutrophils, and B-cell activating factor (BAFF, aka TNFSF13B). BAFF was abundant in HS lesions, particularly in nodules and abscesses. Among the cell types present in HS lesions, myeloid cells were the main BAFF producers. Mechanistically, granulocyte colony-stimulating factor in the presence of bacterial products was the major stimulus for neutrophils' BAFF secretion. Lesional upregulation of BAFF receptors was attributed to B cells (TNFRSF13C/BAFFR and TNFRSF13B/TACI) and plasma cells (TNFRSF17/BCMA). Characterization of the lesional BAFF pathway revealed molecules involved in migration/adhesion (eg, CXCR4, CD37, CD53, SELL), proliferation/survival (eg, BST2), activation (eg, KLF2, PRKCB), and reactive oxygen species production (eg, NCF1, CYBC1) of B/plasma cells. CONCLUSION: Neutrophil-derived BAFF supports B/plasma cell persistence and function in HS lesions.


Assuntos
Fator Ativador de Células B , Hidradenite Supurativa , Neutrófilos , Hidradenite Supurativa/imunologia , Hidradenite Supurativa/metabolismo , Hidradenite Supurativa/patologia , Humanos , Linfócitos B/patologia , Estudos de Casos e Controles , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Neutrófilos/patologia , Fator Ativador de Células B/metabolismo , Pele/metabolismo , Pele/patologia
18.
J Am Soc Nephrol ; 34(3): 412-432, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522156

RESUMO

SIGNIFICANCE STATEMENT: Mutations in hepatocyte nuclear factor-1 ß ( HNF1B ) are the most common monogenic causes of congenital renal malformations. HNF1B is necessary to directly reprogram fibroblasts to induced renal tubule epithelial cells (iRECs) and, as we demonstrate, can induce ectopic pronephric tissue in Xenopus ectodermal organoids. Using these two systems, we analyzed the effect of HNF1B mutations found in patients with cystic dysplastic kidney disease. We found cross-species conserved targets of HNF1B, identified transcripts that are differentially regulated by the patient-specific mutant protein, and functionally validated novel HNF1B targets in vivo . These results highlight evolutionarily conserved transcriptional mechanisms and provide insights into the genetic circuitry of nephrogenesis. BACKGROUND: Hepatocyte nuclear factor-1 ß (HNF1B) is an essential transcription factor during embryogenesis. Mutations in HNF1B are the most common monogenic causes of congenital cystic dysplastic renal malformations. The direct functional consequences of mutations in HNF1B on its transcriptional activity are unknown. METHODS: Direct reprogramming of mouse fibroblasts to induced renal tubular epithelial cells was conducted both with wild-type HNF1B and with patient mutations. HNF1B was expressed in Xenopus ectodermal explants. Transcriptomic analysis by bulk RNA-Seq identified conserved targets with differentially regulated expression by the wild-type or R295C mutant. CRISPR/Cas9 genome editing in Xenopus embryos evaluated transcriptional targets in vivo . RESULTS: HNF1B is essential for reprogramming mouse fibroblasts to induced renal tubular epithelial cells and induces development of ectopic renal organoids from pluripotent Xenopus cells. The mutation R295C retains reprogramming and inductive capacity but alters the expression of specific sets of downstream target genes instead of diminishing overall transcriptional activity of HNF1B. Surprisingly, targets associated with polycystic kidney disease were less affected than genes affected in congenital renal anomalies. Cross-species-conserved transcriptional targets were dysregulated in hnf1b CRISPR-depleted Xenopus embryos, confirming their dependence on hnf1b . CONCLUSIONS: HNF1B activates an evolutionarily conserved program of target genes that disease-causing mutations selectively disrupt. These findings provide insights into the renal transcriptional network that controls nephrogenesis.


Assuntos
Fator 1-beta Nuclear de Hepatócito , Doenças Renais Císticas , Animais , Camundongos , Fator 1-beta Nuclear de Hepatócito/genética , Rim/metabolismo , Doenças Renais Císticas/genética , Mutação , Xenopus laevis
19.
Front Immunol ; 13: 1028788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518759

RESUMO

Previous research on adaptive NK cells in rhesus macaques suffered from the lack of specific antibodies to differentiate between inhibitory CD94/NKG2A and stimulatory CD94/NKG2C heterodimeric receptors. Recently we reported an expansion of NKG2C receptor-encoding genes in rhesus macaques, but their expression and functional role on primary NK cells remained unknown due to this deficit. Thus, we established monoclonal antibodies 4A8 and 7B1 which show identical specificities and bind to both NKG2C-1 and NKG2C-2 but neither react with NKG2C-3 nor NKG2A on transfected cells. Using a combination of 4A8 and Z199 antibodies in multicolor flow cytometry we detected broad expression (4-73%) of NKG2C-1 and/or NKG2C-2 (NKG2C-1/2) on primary NK cells in rhesus macaques from our breeding colony. Stratifying our data to CMV-positive and CMV-negative animals, we noticed a higher proportion (23-73%) of primary NK cells expressing NKG2C-1/2 in CMV+ as compared to CMV- macaques (4-5%). These NKG2C-1/2-positive NK cells in CMV+ macaques are characterized by lower expression of IL12RB2, ZBTB16, SH2D1B, but not FCER1G, as well as high expression of IFNG, indicating that antibody 4A8 detects CMV-associated adaptive NK cells. Single cell RNA seq data of 4A8-positive NK cells from a rhCMV-positive macaque demonstrated that a high proportion of these adaptive NK cells transcribe in addition to NKG2C-1 and NKG2C-2 also NKG2C-3, but interestingly NKG2A as well. Remarkably, in comparison to NKG2A, NKG2C-1 and in particular NKG2C-2 bind Mamu-E with higher avidity. Primary NK cells exposed to Mamu-E-expressing target cells displayed strong degranulation as well as IFN-gamma expression of 4A8+ adaptive NK cells from rhCMV+ animals. Thus, despite co-expression of inhibitory and stimulatory CD94/NKG2 receptors the higher number of different stimulatory NKG2C receptors and their higher binding avidity to Mamu-E outreach inhibitory signaling via NKG2A. These data demonstrate the evolutionary conservation of the CMV-driven development of NKG2C-positive adaptive NK cells with particular molecular signatures in primates and with changes in gene copy numbers and ligand-binding strength of NKG2C isotypes. Thus, rhesus macaques represent a suitable and valuable nonhuman primate animal model to study the CMV-NKG2C liaison in vivo.


Assuntos
Infecções por Citomegalovirus , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Animais , Macaca mulatta , Células Matadoras Naturais
20.
J Cachexia Sarcopenia Muscle ; 13(6): 3106-3121, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254806

RESUMO

BACKGROUND: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS: The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS: We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Humanos , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Células Satélites de Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...